The ECM monitors the engine condition by signals from each sensor, calculates the ignition timing and sends an ignition signal to the igniter. High voltage from the ignition is distributed to each spark plug in the appropriate order to generate a spark between the electrodes, which ignites the air–fuel mixture.

IGNITER
The igniter temporarily interrupts the primary current with the ignition signal (IGT signal) from the ECM and generates sparks at the spark plug. Also, as a fail–safe measure, when ignition occurs an ignition confirmation signal (IGF signal) is sent to the ECM.

IGNITION COIL
The ignition coil uses a closed core coil with the primary coil wrapped around the core and the secondary coil wrapped around the primary coil. This allows the generation of a high voltage sufficient to cause a spark to jump across the spark plug gap.

DISTRIBUTOR
This correctly distributes high voltage to the spark plug of each cylinder in the specified ignition order.

PICKUP COILS
The NE coil detects the crankshaft angle, and the G 1 and G2 coils detect the camshaft position.
PRECAUTION

1. Do not leave the ignition switch on for more than 10 minutes if the engine does not start.

2. With a tachometer connected to the system, connect the tester probe of the tachometer to terminal IG(−) of the data link connector 1.

3. As some tachometers are not compatible with this ignition system, we recommend that you confirm the compatibility of yours before use.

4. Never allow the tachometer terminals to touch ground as it could result in damage to the igniter and/or ignition coil.
 Do not disconnect the battery while the engine is running.

6. Check that the igniter is properly grounded to the body.
OPERATION
To maintain the most appropriate ignition timing, the ECM sends a control signal so that the igniter sends current to the ignition coil and the spark plugs produce a spark.
PREPARATION

SST (SPECIAL SERVICE TOOLS)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Tool Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>09240–00020</td>
<td>Wire Gauge Set</td>
</tr>
<tr>
<td>09843–18020</td>
<td>Diagnosis Check Wire</td>
</tr>
</tbody>
</table>

RECOMMENDED TOOLS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Tool Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>09082–00050</td>
<td>TOYOTA Electrical Tester Set</td>
</tr>
<tr>
<td>09200–00010</td>
<td>Engine Adjust Kit</td>
</tr>
</tbody>
</table>

EQUIPMENT

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark plug cleaner</td>
<td></td>
</tr>
<tr>
<td>Tachometer</td>
<td></td>
</tr>
<tr>
<td>Timing light</td>
<td>Ignition timing</td>
</tr>
</tbody>
</table>
ON–VEHICLE INSPECTION

SPARK TEST

CHECK THAT SPARK OCCURS

(a) Disconnect the high–tension cord (from the ignition coil) from the distributor cap.
(b) Hold the end approx. 12.5 mm (0.50 in.) from the body ground.
(c) See if spark occurs while engine is being cranked.

HINT: To prevent gasoline from being injected from injectors during this test, crank the engine for no more than 1–2 seconds at time.

If the spark does not occur, perform the test as follows:

1. **CHECK CONNECTION OF IGNITION COIL, IGNITER AND DISTRIBUTOR CONNECTOR**
 - NO: Connect securely.
 - OK: BAD

2. **CHECK RESISTANCE OF HIGH–TENSION CORD (See Page IG–7)**
 - Maximum resistance: 25 kΩ per cord
 - OK: BAD

3. **CHECK POWER SUPPLY TO IGNITION COIL AND IGNITER**
 - NO: Check wiring between ignition switch to ignition coil and igniter.
 - OK: BAD

4. **CHECK RESISTANCE OF IGNITION COIL**
 - See page IG–10
 - Resistance: Cold (G1 & G–125–200Ω), Hot (G 2 & G–125–200Ω), Primary 0.36–0.55 Ω, Secondary 9.0–15.4 kΩ, 11.4–18.1 kΩ
 - OK: BAD

5. **CHECK RESISTANCE OF SIGNAL GENERATOR (PICKUP COIL)**
 - See page (IG–12)
 - Resistance: Cold Hot (G1 & G–125–200Ω, 235Ω), G 2 & G–125–200Ω, 160Ω, N E & G–155–250Ω, 190–290Ω
 - OK: BAD

6. **CHECK AIR GAP OF DISTRIBUTOR**
 - See page IG–11
 - Air gap: 0.2–0.5 mm (0.008–0.020 in.)
 - OK: BAD

7. **CHECK IGT SIGNAL FROM ECM**
 - See page EG–344
 - OK: BAD

8. **TRY ANOTHER IGNITER**
 - OK: Replace the ignition coil.
 - BAD: Replace the distributor housing assembly.
 - BAD: Replace the distributor housing assembly.
 - BAD: Check wiring between ECM, distributor and igniter, only then try another ECM.

- IGNITION SYSTEM – (5S–FE California)
HIGH–TENSION CORDS INSPECTION

1. DISCONNECT HIGH–TENSION CORDS FROM SPARK PLUGS
 Disconnect the high–tension cords at the rubber boot. Do not pull on the high–tension cords.
 NOTICE: Pulling on or bending the cords may damage the conductor inside.

2. DISCONNECT HIGH–TENSION CORD FROM IGNITION COIL

3. DISCONNECT HIGH–TENSION CORDS FROM DISTRIBUTOR CAP

4. INSPECT HIGH–TENSION CORD RESISTANCE
 Using an ohmmeter, measure the resistance.
 Maximum resistance:
 25 kΩ per cord.
 If the resistance is greater than maximum, check the terminals. If necessary, replace the high–tension cord.

5. RECONNECT HIGH–TENSION CORDS TO DISTRIBUTOR CAP

6. RECONNECT HIGH–TENSION CORD TO IGNITION COIL

7. RECONNECT HIGH–TENSION CORDS TO SPARK PLUGS
SPARK PLUGS INSPECTION

NOTICE:
• Never use a wire brush for cleaning.
• Never attempt to adjust the electrode gap on a used spark plug.
• Spark plugs should be replaced every 100,000 km (60,000 miles).

1. DISCONNECT HIGH–TENSION CORDS FROM SPARK PLUGS
Disconnect the high–tension cords at the rubber boot. Do not pull on the cords.
NOTICE: Pulling on or bending the cords may damage the conductor inside.

2. INSPECT ELECTRODE
Using a megger (insulation resistance meter), measure the insulation resistance.
Standard correct insulation resistance: 10 MΩ or more
If the resistance is less than specified, proceed to step 4.
HINT: If a megger is not available, the following simple method of inspection provides fairly accurate results.

Simple Method:
(a) Quickly race the engine to 4,000 rpm 5 times.
(b) Remove the spark plug. (See step 4)
(c) Visually check the spark plug.
 If the electrode is dry ... OK
 If the electrode is wet ... Proceed to step 5
(d) Reinstall the spark plug. (See step 8)

3. REMOVE SPARK PLUGS
Using a 16 mm plug wrench, remove the 4 spark plugs.
4. VISUALLY INSPECT SPARK PLUGS
Check the spark plug for thread damage and insulator damage.
If abnormal, replace the spark plug.
Recommended spark plug:
 - PK20R11 for ND
 - BKR6EP11 for NGK

5. INSPECT ELECTRODE GAP
Maximum electrode gap for used spark plug:
 1.3 mm (0.051 in.)
If the gap is greater than maximum, replace the spark plug.
Correct electrode gap for new spark plug:
 1.1 mm (0.043 in.)
NOTICE: if adjusting the gap of a new spark plug, bend only the base of the ground electrode. Do not touch the tip. Never attempt to adjust the gap on the used plug.

6. CLEAN SPARK PLUGS
If the electrode has traces of wet carbon, allow it to dry and then clean with a spark plug cleaner.
Air pressure:
 - Below 588 kPa (6 kgf/cm², 85 psi)
Duration:
 - 20 seconds or less
HINT: If there are traces of oil, remove it with gasoline before using the spark plug cleaner.

7. REINSTALL SPARK PLUGS
Using a 16 mm plug wrench, install the 4 spark plugs.
Torque: 18 N–m (180 kgf–cm, 13 ft–lbf)

8. RECONNECT HIGH–TENSION CORDS T4 SPARK PLUGS
IGNITION COIL INSPECTION

NOTICE: 'Cold' and 'Hot' in the following sentences express the temperature of the coils themselves. 'Cold' is from –10°C (14°F) to 50°C (122°F) and 'Hot' is from 60°C (122°F) to 100°C (212°F).

1. DISCONNECT IGNITION COIL CONNECTOR
2. DISCONNECT HIGH–TENSION CORD FROM IGNITION COIL
3. INSPECT PRIMARY COIL RESISTANCE
 Using an ohmmeter, measure the resistance between the positive (+) and negative (–) terminals.
 Primary coil resistance (Cold):
 0.36–0.55Ω
 Primary coil resistance (Hot):
 0.45–0.65Ω
 If the resistance is not as specified, replace the ignition coil.

4. INSPECT SECONDARY COIL RESISTANCE
 Using an ohmmeter, measure the resistance between the positive (+) and high–tension terminals.
 Secondary coil resistance (Cold):
 9.0–15.4 kΩ
 Secondary coil resistance (Hot):
 11.4–18.1 kΩ
 If the resistance is not as specified, replace the ignition coil.

6. RECONNECT HIGH–TENSION CORD TO IGNITION COIL
6. RECONNECT IGNITION COIL CONNECTOR
DISTRIBUTOR INSPECTION

NOTICE: 'Cold' and ‘Hot’ in the following sentences express the temperature of the coils themselves. ‘Cold’ is from –10°C (14°F) to 50°C (122°F) and ‘Hot’ is from 50°C (122°F) to 100°C (212°F).

1. REMOVE DISTRIBUTOR CAP
Remove the 2 bolts, and disconnect the distributor cap from the distributor housing.

2. REMOVE ROTOR

3. REMOVE DUSTPROOF COVER

4. INSPECT AIR GAP
Using SST (G1 and G2 pickups) and a feeler gauge (NE pickup), measure the air gap between the signal rotor and pickup coil projection.
SST 09240-00020 for G 1 and G2 pickups
Air gap:
0.2–0.5 mm (0.008–0.020 in.)
If the air gap is not as specified, replace the distributor housing assembly.

6. DISCONNECT DISTRIBUTOR CONNECTOR
6. REMOVE DISTRIBUTOR HOUSING ASSEMBLY
Remove the bolt, pull out the distributor housing.
7. INSPECT SIGNAL GENERATOR (PICKUP COIL) RESISTANCE

Using an ohmmeter, measure the resistance between terminals.

Pickup coil resistance (Cold):
- G1 and G(E)
 - 125–200Ω
- G2 and G(–)
 - 125–200Ω
- NE and G(–)
 - 155–2500

Pickup coil resistance (Hot):
- G1 and G(–)
 - 160–235Ω
- G2 and G(–)
 - 160–235Ω
- NE and G(–)
 - 190–290Ω

If the resistance is not as specified, replace the distributor housing assembly.

8. REINSTALL DISTRIBUTOR HOUSING ASSEMBLY
 (See steps 1 and 2 on pages IG–17 and 18)

9. RECONNECT DISTRIBUTOR CONNECTOR
10. REINSTALL DUSTPROOF COVER
11. REINSTALL ROTOR

12. REINSTALL DISTRIBUTOR CAP
 Install a new packing and distributor cap with the 2 bolts.

13. ADJUST IGNITION TIMING
 (See page IG–19)

IGNITER INSPECTION
(See Spark Test procedure on page IG–6)
DISTRIBUTOR
COMPONENTS FOR REMOVAL AND INSTALLATION

1. DISCONNECT NEGATIVE (–) TERMINAL CABLE FROM BATTERY

CAUTION: Work must be started after 90 seconds from the time the Ignition switch is turned to the 'LOCK' position and the negative (–) terminal cable is disconnected from the battery.

2. DISCONNECT ACCELERATOR CABLE FROM THROTTLE BODY
3. REMOVE AIR CLEANER CAP, RESONATOR AND AIR CLEANER HOSE
 (a) Disconnect the intake air temperature sensor connector.
 (b) Disconnect the air hose from the air cleaner hose.
 (c) Loosen the air cleaner hose clamp bolt.
 (d) Disconnect the 4 air cleaner cap clips.
 (e) Disconnect the air cleaner hose from the throttle body, and remove the air cleaner cap together with the resonator and air cleaner hose.

4. DISCONNECT DISTRIBUTOR CONNECTOR
5. DISCONNECT HIGH–TENSION CORD FROM IGNITION COIL

6. DISCONNECT HIGH–TENSION CORDS FROM SPARK PLUGS
 (a) Disconnect the high–tension cords from the cord clamps.
 (b) Disconnect the 4 high–tension cords from the spark plugs.
 Disconnect the high–tension cords at the rubber boot. Do not pull on the high–tension cords.
 NOTICE: Pulling on or bending the cords may damage the conductor Inside.

7. REMOVE DISTRIBUTOR
 (a) Remove the hold–down bolt, and pull out the distributor.
 (b) Remove the 0–ring from the distributor housing.
COMPONENTS FOR DISASSEMBLY AND ASSEMBLY

1. REMOVE DISTRIBUTOR CAP
Remove the 2 bolts, distributor cap and packing.

2. REMOVE ROTOR
Remove the 2 screws and rotor.

DISTRIBUTOR DISASSEMBLY

(See Components for Disassembly and Assembly)
1. REMOVE DISTRIBUTOR CAP
Remove the 2 bolts, distributor cap and packing.

2. REMOVE ROTOR
Remove the 2 screws and rotor.
3. REMOVE DUST PROOF COVER
(a) Remove the dust proof seal.

(b) Remove the dust proof cover.

DISTRIBUTOR INSPECTION
INSPECT SHAFT
Turn the shaft and check that it is not rough or worn. If it feels rough or worn, replace the distributor housing assembly.

DISTRIBUTOR ASSEMBLY
(See Components for Disassembly and Assembly)
1. INSTALL DUST PROOF COVER
(a) Install the dust proof cover.

(b) Install the dust proof seal.
2. INSTALL ROTOR
(a) Align the hollow of the signal rotor with the protrusion of the rotor.

(b) Install the rotor with the 2 screws.

3. INSTALL DISTRIBUTOR CAP
(a) Install a new packing to the distributor housing.

(b) Install the distributor cap with the 2 bolts.

DISTRIBUTOR INSTALLATION

(See Components for Removal and Installation)
1. SET NO. 1 CYLINDER TO TDC/COMPRESSION
Turn the crankshaft clockwise, and position the slit of the intake camshaft as shown in the illustration.
2. INSTALL DISTRIBUTOR
(a) Install a new O–ring to the housing.
(b) Apply a light coat of engine oil on the 0–ring.

(c) Align the cutout of the coupling with the line of the housing.
(d) Insert the distributor, aligning the center of the flange with that of bolt hole on the cylinder head.

(e) Lightly tighten the hold–down bolt.
(f) Connect the high–tension cords to the clamp on the cylinder head cover.

3. CONNECT HIGH–TENSION CORDS TO SPARK PLUGS
Firing order:
1–3–4–2

4. CONNECT HIGH–TENSION CORD TO IGNITION COIL

5. CONNECT DISTRIBUTOR CONNECTOR

6. INSTALL AIR CLEANER CAP, RESONATOR AND AIR CLEANER HOSE
(a) Connect the air cleaner hose to the throttle body.
(b) Install the air cleaner cap together with the resonator and air cleaner hose.
(c) Connect the air hose to the air cleaner hose.
(d) Connect the intake air temperature sensor connector.
7. CONNECT AND ADJUST ACCELERATOR CABLE
8. CONNECT NEGATIVE (–) TERMINAL CABLE TO BATTERY
9. WARM UP ENGINE
Allow the engine to warm up to normal operating temperature.

10. CONNECT TACHOMETER AND TIMING LIGHT TO ENGINE
Connect the test probe of a tachometer to terminal IGE) of the data link connector 1.

NOTICE:
• NEVER allow the tachometer terminal to touch ground as it could result in damage to the igniter and/or ignition coil.
• As some tachometers are not compatible with this ignition system, we recommend that you confirm the compatibility of yours before use.

11. ADJUST IGNITION TIMING
(a) Using SST, connect terminals TE1 and E1 of the data link connector 1.
 SST 09843–18020
 HINT: After engine speed is kept at 1,000–1,300 rpm for 5 seconds, check that it returns to idle speed.

(b) Using a timing light, check the ignition timing.
 Ignition timing:
 10° BTDC 0 idle
 (Transmission in neutral position)
12. FURTHER CHECK IGNITION TIMING

Ignition timing:
0–10° BTDC 0 idle
(Transmission in neutral position)
HINT: The timing mark moves in a range between 0° and 10°.

(c) Loosen the hold-down bolt, and adjust by turning the distributor.
(d) Tighten the hold-down bolt, and recheck the ignition timing.
Torque: 19 N–m (195 kgf–cm, 14 ft–lbf)

(e) Remove the SST.
SST 09843–18020

13. DISCONNECT TACHOMETER AND TIMING LIGHT FROM ENGINE
SERVICE SPECIFICATIONS

SERVICE DATA

<table>
<thead>
<tr>
<th>Part tightened</th>
<th>N·m</th>
<th>kgf·cm</th>
<th>ft·lbf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark plug x Cylinder head</td>
<td>18</td>
<td>180</td>
<td>13</td>
</tr>
<tr>
<td>Distributor x Cylinder head</td>
<td>19</td>
<td>195</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High–tension cord</th>
<th>Resistance Limit</th>
<th>25 kΩ per cord</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark plug</td>
<td>Recommended spark plug</td>
<td>PK20R11</td>
</tr>
<tr>
<td></td>
<td>Correct electrode gap</td>
<td>1.1 mm (0.043 in.)</td>
</tr>
<tr>
<td>Ignition coil</td>
<td>Primary coil resistance</td>
<td>at cold 0.36 – 0.55 Ω</td>
</tr>
<tr>
<td></td>
<td>Secondary coil resistance</td>
<td>at cold 9.0 – 15.4 kΩ</td>
</tr>
<tr>
<td>Distributor</td>
<td>Air gap</td>
<td>0.2 – 0.5 mm (0.008 – 0.020 in.)</td>
</tr>
<tr>
<td></td>
<td>Pickup coil resistance</td>
<td>at cold G1 – G2 125 – 200 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2 – G2 125 – 200 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NE – G2 155 – 250 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>at hot G1 – G2 160 – 235 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2 – G2 160 – 235 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NE – G2 190 – 290 Ω</td>
</tr>
</tbody>
</table>
(5S–FE Except California)

DESCRIPTION

The engine control module (ECM) is programmed with data for optimum ignition timing under all operating conditions. Using data provided by sensors which monitor various engine functions (rpm, intake air volume, engine temperature, etc.), the ECM triggers the spark at precisely the right instant.

The ECM monitors the engine condition by signals from each sensor, calculates the ignition timing and sends an ignition signal to the igniter. High voltage from the ignition is distributed to each spark plug in the appropriate order to generate a spark between the electrodes, which ignites the air–fuel mixture.

IGNITER

The igniter temporarily interrupts the primary current with the ignition signal (IGT signal) from the ECM and generates sparks at the spark plug. Also, as a fail–safe measure, when ignition occurs an ignition confirmation signal (IGF signal) is sent to the ECM.

IGNITION COIL

The ignition coil uses a closed core coil with the primary coil wrapped around the core and the secondary coil wrapped around the primary coil. This allows the generation of a high voltage sufficient to cause a spark to jump across the spark plug gap.

DISTRIBUTOR

This correctly distributes high voltage to the spark plug of each cylinder in the specified ignition order.

The NE coil detects the crankshaft position, and the G coil detects the camshaft position. The NE coil detects the crankshaft position, and the G coil detects the camshaft position.
PRECAUTION

1. Do not leave the ignition switch on for more than 10 minutes if the engine does not start.

2. With a tachometer connected to the system, connect the test probe of the tachometer to terminal IG of the data link connector 1.

3. As some tachometers are not compatible with this ignition system, we recommend that you confirm the compatibility of yours before use.

4. NEVER allow the tachometer terminals to touch ground as it could result in damage to the igniter and/or ignition coil.

6. Do not disconnect the battery while the engine is running.

6. Check that the igniter is properly grounded to the body.
OPERATION
To maintain the most appropriate ignition timing, the ECM sends a control signal so that the igniter sends current to the ignition coil and the spark plugs produce a spark.
PREPARATION

SST (SPECIAL SERVICE TOOLS)

<table>
<thead>
<tr>
<th>Tool Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>09843–18020</td>
<td>Diagnosis Check Wire</td>
</tr>
</tbody>
</table>

RECOMMENDED TOOLS

<table>
<thead>
<tr>
<th>Tool Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>09082–00050</td>
<td>TOYOTA Electrical Tester Set</td>
</tr>
<tr>
<td>09200–00010</td>
<td>Engine Adjust Kit</td>
</tr>
</tbody>
</table>

EQUIPMENT

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Megger insulation resistance meter</td>
<td>Insulation resistance meter</td>
</tr>
<tr>
<td>Spark plug cleaner</td>
<td></td>
</tr>
<tr>
<td>Tachometer</td>
<td></td>
</tr>
<tr>
<td>Timing light</td>
<td>Ignition timing</td>
</tr>
</tbody>
</table>

SSM (SPECIAL SERVICE MATERIALS)

<table>
<thead>
<tr>
<th>Tool Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>08826–00080</td>
<td>Seal packing or equivalent</td>
</tr>
</tbody>
</table>
ON-VEHICLE INSPECTION

SPARK TEST

CHECK THAT SPARK OCCURS

(a) Disconnect the high-tension cords from the spark plugs. (See page IG–28)
(b) Remove the spark plugs. (See page IG–28)
(c) Install the spark plugs to each high-tension cord.
(d) Ground the spark plug.
(e) Check if spark occurs while engine is being cranked.

HINT: To prevent gasoline from being injected from injectors during this test, crank the engine for no more than 1–2 seconds at a time. If the spark does not occur, perform the test as follows:

- CHECK RESISTANCE OF SIGNAL GENERATOR (PICKUP COIL) (See page IG–31)
 - Resistance: Cold Hot
 - Primary: 0.36–0.55 Ω, 0.45–0.65 Ω
 - Secondary: 9.0–15.4 kΩ, 11.4–18.1 kΩ

- CHECK POWER SUPPLY TO IGNITION COIL
 - 1. Turn ignition switch ON.
 - 2. Check that there is battery voltage at ignition coil positive (+) terminal.

- CHECK RESISTANCE OF HIGH-TENSİON CORD (See page IG–27)
 - Maximum resistance: 25 kΩ per cord

- CHECK RESISTANCE OF IGNITION COIL (See page IG–30)
 - Resistance: Cold Hot
 - Primary: 0.36–0.55 Ω, 0.45–0.65 Ω
 - Secondary: 9.0–15.4 kΩ, 11.4–18.1 kΩ

- CHECK RESISTANCE OF SIGNAL GENERATOR (PICKUP COIL) (See page IG–31)
 - Resistance: Cold Hot
 - G (+) and IG (−) 185–275 Ω, 240–325 Ω
 - NE (+) and NE (−) 370–550 Ω, 475–650 Ω

- CHECK AIR GAP OF DISTRIBUTOR (See page IG–30)
 - Air gap: 0.2–0.4 mm (0.008–0.016 in.)

- CHECK IGT SIGNAL FROM ECM (See page EG–344)

- TRY ANOTHER IGNITER
HIGH–TENSION CORDS INSPECTION

1. DISCONNECT HIGH–TENSION CORDS FROM SPARK PLUGS
 Disconnect the high–tension cords at the rubber boot.
 DO NOT pull on the cords.
 NOTICE: Pulling on or bending the cords may damage the conductor inside.

2. DISCONNECT HIGH–TENSION CORDS FROM DISTRIBUTOR CAP

3. INSPECT HIGH–TENSION CORD RESISTANCE
 Using an ohmmeter, measure the resistance.
 Maximum resistance:
 25 kΩ per cord
 If the resistance is greater than maximum, check the terminals. If necessary, replace the high–tension cord.

4. RECONNECT HIGH–TENSION CORDS TO DISTRIBUTOR CAP
5. RECONNECT HIGH–TENSION CORDS TO SPARK PLUGS.
SPARK PLUGS INSPECTION

NOTICE:
- Never use a wire brush for cleaning.
- Never attempt to adjust the electrode gap on a used spark plug.
- Spark plugs should be replaced every 100,000 km (60,000 miles).

1. DISCONNECT HIGH–TENSION CORDS FROM SPARK PLUGS

2. INSPECT ELECTRODE
Using a megger (insulation resistance meter), measure the insulation resistance.

Standard correct insulation resistance:
10 MΩ or more

If the resistance is less than specified, proceed to step 3.

HINT: If a megger is not available, the following simple method of inspection provides fairly accurate results.

Simple Method:
(a) Quickly race the engine to 4,000 rpm 5 times.
(b) Remove the spark plug. (See step 3)
(c) Visually check the spark plug.
 - If the electrode is dry ... OK
 - If the electrode is wet ... Proceed to step 4
(d) Reinstall the spark plug.
 (See step 7 on page IG–29)

3. REMOVE SPARK PLUGS
Using a 16 mm plug wrench, remove the spark plug.
4. VISUALLY INSPECT SPARK PLUGS
Check the spark plug for thread damage and insulator damage.
If abnormal, replace the spark plug.

Recommended spark plug:
- PK20R 11 for N D
- BKR6EP11 for NGK

5. INSPECT ELECTRODE GAP
Maximum electrode gap:
- 1.3 mm (0.051 in.)
If the gap is greater than maximum, replace the spark plug.

Correct electrode gap of new spark plug:
- 1.1 mm (0.043 in.)

NOTICE: If adjusting the gap of a new spark plug, bend only the base of the ground electrode. Do not touch the tip. Never attempt to adjust the gap on the used plug.

6. CLEAN SPARK PLUGS
If the electrode has traces of wet carbon, allow it to dry and then clean with a spark plug cleaner.

Air pressure:
- Below 588 kPa (6 kgf/cm², 85 psi)

Duration:
- 20 seconds or less

HINT: If there are traces of oil, remove it with gasoline before using the spark plug cleaner.

7. INSTALL SPARK PLUGS
Using a 16 mm plug wrench, install the spark plug.
Torque: 18 N·m (180 kgf·cm, 13 ft·lbf)

8. RECONNECT HIGH–TENSION CORDS TO SPARK PLUGS
DISTRIBUTOR INSPECTION

NOTICE: 'Cold' and 'Hot' in the following sentences express the temperature of the coils themselves. 'Cold' is from –10°C (14°F) to 50°C (122°F) and 'Hot' is from 50°C (122°F) to 100°C (212°F).

1. DISCONNECT DISTRIBUTOR CONNECTORS
2. REMOVE DISTRIBUTOR CAP
3. REMOVE ROTOR
4. REMOVE IGNITION COIL DUST COVER

Ignition Coil

5. INSPECT PRIMARY COIL RESISTANCE
Using an ohmmeter, measure the resistance between the positive (+) and negative (–) terminals.

Primary coil resistance (Cold):
0.38–0.550

Primary coil resistance (Hot):
0.45–0.650

If the resistance is not as specified, replace the ignition coil.

6. INSPECT SECONDARY COIL RESISTANCE
Using an ohmmeter, measure the resistance between positive (+) and high-tension terminals.

Secondary coil resistance (Cold):
9.0–15.4 kΩ

Secondary coil resistance (Hot):
11.4–18.1 kΩ

If the resistance is not as specified, replace the ignition coil.

Distributor

7. INSPECT AIR GAP

Using a thickness gauge, measure the air gap between the signal rotor and pickup coil projection.

Air gap:
0.2–0.4 mm (0.008–0.018 in.)

If the air gap is not as specified, replace the distributor housing assembly.
8. INSPECT SIGNAL GENERATOR (PICKUP COIL) RESISTANCE
Using an ohmmeter, measure the resistance between the terminals (G⁺ and G⁻, NE⁺ and NE⁻).

Pickup coil resistance (Cold):
- G⁺ and G⁻: 185–2750
- NE⁺ and NE⁻: 370–5500

Pickup coil resistance (Hot):
- G⁺ and G⁻: 240–3250
- NE⁺ and NE⁻: 475–6500

If the resistance is not as specified, replace the distributor housing assembly.

9. REINSTALL IGNITION COIL DUST COVER
10. REINSTALL ROTOR
11. REINSTALL DISTRIBUTOR CAP
12. RECONNECT DISTRIBUTOR CONNECTORS

IGNITER INSPECTION
(See Spark Test procedure on page IG–26)
DISTRIBUTOR REMOVAL

1. DISCONNECT NEGATIVE (–) TERMINAL CABLE FROM BATTERY
 CAUTION: Work must be started after 90 seconds from the time the ignition switch (\(\text{\textup{\textbf{:\)}}}\) turned to the 'LOCK' position and the negative (–) terminal cable is disconnected from the battery.

2. DISCONNECT ACCELERATOR CABLE FROM THROTTLE LINKAGE
3. REMOVE AIR CLEANER CAP, RESONATOR AND AIR CLEANER HOSE
 (a) Disconnect the intake air temperature sensor connector.
 (b) Loosen the air cleaner hose clamp bolt.
 (c) Disconnect the 4 air cleaner cap clips.
 (d) Disconnect the air cleaner hose from the throttle body, and remove the air cleaner cap together with the resonator and air cleaner hose.

4. DISCONNECT DISTRIBUTOR CONNECTORS

5. DISCONNECT HIGH–TENSION CORDS FROM SPARK PLUGS
 (a) Disconnect the 4 high–tension cords from the spark plugs.
 (b) Disconnect the high–tension cords from the clamp on the cylinder head cover.

6. REMOVE DISTRIBUTOR
 (a) Remove the 2 hold–down bolts, and pull out the distributor.
 (b) Remove the 0–ring from the distributor housing.
COMPONENTS FOR DISASSEMBLY AND ASSEMBLY

DISTRIBUTOR DISASSEMBLY

1. REMOVE DISTRIBUTOR CAP WITHOUT DISCONNECTING HIGH–TENSION CORDS
2. REMOVE ROTOR
3. REMOVE IGNITION COIL DUST COVER

4. REMOVE IGNITION COIL
 (a) Remove the 2 nuts, and disconnect the 3 wires from the ignition coil terminals.
(b) Remove the 4 screws and ignition coil.

B. REMOVE DISTRIBUTOR WIRE
Remove the distributor wire from the distributor housing.

6. REMOVE CONDENSER
Remove the screw and condenser.

DISTRIBUTOR INSPECTION

INSPECT SHAFT
Turn the shaft and check that it is not rough or worn. If it feels rough or worn, replace the distributor housing assembly.

DISTRIBUTOR ASSEMBLY
(See Components for Disassembly and Assembly)

1. **INSTALL CONDENSER**
Install the condenser with the screw.
2. INSTALL DISTRIBUTOR WIRE
Install the grommet of the wire to the distributor housing.

3. INSTALL IGNITION COIL
(a) Remove any old packing (FIPG) material.
(b) Apply seal packing to the ignition coil installing surface of the housing as shown in the illustration.
 Seal packing:
 Part No. 08826–00080 or equivalent

 (c) Install the ignition coil with the 4 screws.

 (d) Connect the 3 wires to the ignition coil terminals with the 2 nuts.

NOTICE:
- When connecting the wires to the ignition coil, insert both properly into their grooves found on the side of the Ignition coil.
- Be sure the wires do not contact with signal rotor or distributor housing.
DISTRIBUTOR INSTALLATION

(See Components for Disassembly and Assembly)

1. SET NO. 1 CYLINDER TO TDC/COMPRESSION
Turn the crankshaft clockwise, and position the slit of the intake camshaft as shown in the illustration.

2. INSTALL DISTRIBUTOR
(a) Install a new O–ring to the housing.
(b) Apply a light coat of engine oil on the 0–ring.
(c) Align the cutout of the coupling with the line of the housing.
(d) Insert the distributor, aligning the center of the flange with that of bolt hole on the cylinder head.
(e) Lightly tighten the 2 hold–down bolts.
(f) Connect the high–tension cords to the clamp on the cylinder head cover.
3. CONNECT HIGH–TENSION CORDS TO SPARK PLUGS
 Firing order:
 1–3–4–2
4. CONNECT DISTRIBUTOR CONNECTORS

5. INSTALL AIR CLEANER CAP, RESONATOR AND AIR CLEANER HOSE
 (a) Connect the air cleaner hose to the throttle body.
 (b) Install the air cleaner cap together with the resonator and air cleaner hose.
 (c) Connect the intake air temperature sensor connector.

6. CONNECT AND ADJUST ACCELERATOR CABLE
7. CONNECT NEGATIVE (–) TERMINAL CABLE TO BATTERY
8. WARM UP ENGINE
 Allow the engine to warm up to normal operating temperature.

9. CONNECT TACHOMETER
 Connect the test probe of a tachometer to terminal IG E) of the data link connector 1.
 NOTICE:
 • NEVER allow the tachometer terminal to touch ground as it could result in damage to the igniter and/or ignition coil.
 • As some tachometers are not compatible with this ignition system, we recommend that you confirm the compatibility of yours before use.

10. ADJUST IGNITION TIMING
 (a) Using SST, connect terminals TE 1 and E 1 of the data link connector 1.
 SST 09843–18020
 HINT: After engine speed is kept at 1,000–1,300 rpm for 5 seconds, check that it returns to idle speed.
11. FURTHER CHECK IGNITION TIMING

(b) Using a timing light, check the ignition timing.

Ignition timing:

- 10° BTDC 0 Idle

 (Transmission In neutral position)

(c) Loosen the 2 hold-down bolts, and adjust by turning the distributor.

(d) Tighten the hold-down bolts, and recheck the ignition timing.

Torque: 19 N·m (195 kgf·cm, 14 ft·lbf)

(e) Remove the SST.

SST 09843–18020

12. DISCONNECT TACHOMETER AND TIMING LIGHT FROM ENGINE
SERVICE SPECIFICATIONS
SERVICE DATA

<table>
<thead>
<tr>
<th>Ignition timing</th>
<th>w/ Terminals TE1 end E1 connected of DLC1</th>
<th>10° BTDC @ idle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firing order</td>
<td>-</td>
<td>1 - 3 - 4 - 2</td>
</tr>
<tr>
<td>High-tension cord</td>
<td>Resistance</td>
<td>Limit 25 kΩ per cord</td>
</tr>
<tr>
<td>Spark plug</td>
<td>Recommended spark plug</td>
<td>ND PK20R11</td>
</tr>
<tr>
<td></td>
<td>Correct electrode gap</td>
<td>NGK BKR6EP11</td>
</tr>
<tr>
<td>Ignition coil</td>
<td>Primary coil resistance</td>
<td>at cold 0.38 - 0.58 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>at hot 0.45 - 0.65 Ω</td>
</tr>
<tr>
<td></td>
<td>Secondary coil resistance</td>
<td>at cold 9.0 - 15.4 kΩ</td>
</tr>
<tr>
<td>Distributor</td>
<td>Air gap</td>
<td>0.2 - 0.4 mm (0.008 - 0.018 in.)</td>
</tr>
<tr>
<td></td>
<td>Pickup coil resistance</td>
<td>at cold 185 - 275 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NE@ - NE@ 370 - 560 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>at hot G@ - G@ 240 - 325 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NE@ - NE@ 475 - 650 Ω</td>
</tr>
</tbody>
</table>

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Part tightened</th>
<th>N·m</th>
<th>kgf·cm</th>
<th>ft·lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark plug x Cylinder head</td>
<td>18</td>
<td>180</td>
<td>13</td>
</tr>
<tr>
<td>Distributor x Cylinder head</td>
<td>19</td>
<td>195</td>
<td>14</td>
</tr>
</tbody>
</table>
The ECM monitors the engine condition by signals from each sensor, calculates the ignition timing and sends an ignition signal to the igniter. High voltage from the ignition is distributed to each spark plug in the appropriate order to generate a spark between the electrodes, which ignites the air–fuel mixture.

IGNITER

The igniter interrupts the primary current with the ignition signal (IGT signal) from the ECM and generates sparks at the spark plug. Also, as a fail–safe measure, when ignition occurs an ignition confirmation signal (IGF signal) is sent to the ECM.

IGNITION COILS

The ignition coil uses a closed core coil with the primary coil wrapped around the core and the secondary coil wrapped around the primary coil. This allows the generation of a high voltage sufficient to cause a spark to jump across the spark plug gap.

CAMSHAFT POSITION SENSOR

The camshaft position sensor detect the camshaft position.

CRANKSHAFT POSITION SENSOR

The crankshaft position sensor detect the crankshaft position.
4. As some tachometers are not compatible with this ignition system, we recommend that you confirm the compatibility of your unit before use.

5. Never allow the tachometer terminals to touch ground as it could result in damage to the igniter and/or ignition coil.

6. Do not disconnect the battery while the engine is running.

7. Check that the igniter is properly grounded to the body.
OPERATION

To maintain the most appropriate ignition timing, the ECM sends a control signal so that the igniter is pass the current to the ignition coils and the spark plugs produce a spark.
PREPARATION

RECOMMENDED TOOLS

<table>
<thead>
<tr>
<th>Tool</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOYOTA Electrical Tester Set</td>
<td>09082-00050</td>
</tr>
<tr>
<td>Engine Adjust Kit</td>
<td>09200-00010</td>
</tr>
</tbody>
</table>

EQUIPMENT

<table>
<thead>
<tr>
<th>Equipment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Megger insulation resistance meter</td>
<td>Spark plug</td>
</tr>
<tr>
<td>Spark plug cleaner</td>
<td></td>
</tr>
<tr>
<td>Thermometer</td>
<td></td>
</tr>
<tr>
<td>Timing light</td>
<td></td>
</tr>
</tbody>
</table>
ON-VEHICLE INSPECTION

SPARK TEST

CHECK THAT SPARK OCCURS

(a) Remove the ignition coil.
 (See steps 1 to 3 on page IG–50)
(b) Remove the spark plug.
 (See step 3 on page IG–47)
(c) Install the spark plug to the ignition coil, and connect
 the ignition coil connector.
(d) Ground the spark plug.
(e) Check if spark occurs while engine is being cranked.

HINT: To prevent gasoline from being injected from injectors during this test, crank the engine for no more than 1–2 seconds at time.

If the spark does not occur, perform the test as follows:

<table>
<thead>
<tr>
<th>SPARK TEST</th>
<th>NO</th>
<th>CHECK CONNECTION OF IGNITION COIL AND IGNITER</th>
<th>BAD</th>
<th>Connect securely.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CHECK POWER SUPPLY TO IGNITION COIL AND IGNITER</td>
<td>OK</td>
<td>Check wiring between ignition switch to ignition coil and igniter.</td>
</tr>
</tbody>
</table>
| | | 1. Turn ignition switch ON.
 2. Check that there is battery voltage at ignition coil positive (+) terminal. | BAD | Replace the ignition coil. |
| | | CHECK RESISTANCE OF IGNITION COIL
 (See page IG–48)
 Resistance:
 Primary Cold: 0.54–0.84Ω, Hot: 0.68–0.98 Ω | OK | Replace the camshaft position sensor. |
| | | CHECK RESISTANCE OF CAMSHAFT POSITION SENSOR
 (See page IG–49)
 Resistance:
 Cold: 835–1,400Ω, Hot: 1,060–1,645Ω | BAD | Replace the crankshaft position sensor. |
| | | CHECK RESISTANCE OF CRANKSHAFT POSITION SENSOR
 (See page IG–54)
 Resistance:
 Cold: 1,630–2,740Ω, Hot: 2,065–3,225Ω | OK | Check wiring between ECM, and igniter, and then try another ECM. |
| | | CHECK IG'T SIGNAL FROM ECM
 (See page EG–550) | BAD | TRY ANOTHER IGNITER |

| TRY ANOTHER IGNITER | BAD | Connect securely. | CHECK CONNECTION OF IGNITION COIL AND IGNITER | BAD | Check wiring between ignition switch to ignition coil and igniter. | BAD | Replace the ignition coil. | OK | Replace the camshaft position sensor. | BAD | Replace the crankshaft position sensor. | OK | Check wiring between ECM, and igniter, and then try another ECM. |
2. INSPECT ELECTRODE
Using a megger (insulation resistance meter), measure the insulation resistance.
Standard correct Insulation resistance:
10 MΩ or more
If the resistance is less than specified, proceed to step 4.
HINT: If a megger is not available, the following simple method of inspection provides fairly accurate results.

Simple Method:
(a) Quickly race the engine to 4,000 rpm 5 times.
(b) Remove the spark plug. (See step 3)
(c) Visually check the spark plug.
 If the electrode is dry ... OK
 If the electrode is wet ... Proceed to step 4
(d) Reinstall the spark plug. (See step 7)
3. REMOVE SPARK PLUGS
Using a 16 mm plug wrench, remove the spark plugs from the RH and LH cylinder heads.

4. VISUALLY INSPECT SPARK PLUGS
Check the spark plug for thread damage and insulator damage.
If abnormal, replace the spark plug.
Recommended spark plug:
- PK20R11 for ND
- BKR6EP–11 for NGK

5. INSPECT ELECTRODE GAP
Maximum electrode gap for used spark plug:
1.3 mm (0.051 in.)
If the gap is greater than maximum, replace the spark plug.
Correct electrode gap for new spark plug:
1.1 mm (0.043 in.)
NOTICE: If adjusting the gap of a new spark plug, bend only the base of the ground electrode. Do not touch the tip. Never attempt to adjust the gap on the used plug.

6. CLEAN SPARK PLUGS
If the electrode has traces of wet carbon, allow it to dry and then clean with a spark plug cleaner.
Air pressure:
- Below 588 kPa (6 kgf/cm², 85 psi)
Duration:
- 20 seconds or less
HINT: If there are traces of oil, remove it with gasoline before using the spark plug cleaner.

7. REINSTALL SPARK PLUGS
Using a 16 mm plug wrench, install the spark plugs to the RH and LH cylinder heads.
Torque: 18 N–m (180 kgf–cm, 13 ft–lbf)

8. REINSTALL IGNITION COILS
(See steps 1 to 3 on page IG–51)
IGNITION COIL INSPECTION

NOTICE: ‘Cold’ and ‘Hot’ in the following sentences express the temperature of the coils themselves. “Cold” is from −10°C (14°F) to 50°C (112°F) and ‘Hot’ is from 60°C (122°F) to 100°C (212°F).

1. DISCONNECT NEGATIVE (−) TERMINAL CABLE FROM BATTERY
 CAUTION: Work must be started after 90 seconds from the time the ignition switch is turned to the “LOCK” position and the negative (−) terminal cable is disconnected from the battery.

2. REMOVE V–BANK COVER
 Using a 5 mm hexagon wrench, remove the 2 cap nuts and V–bank cover.

3. DISCONNECT IGNITION COIL CONNECTORS

4. INSPECT PRIMARY COIL RESISTANCE
 Using an ohmmeter, measure the resistance between the positive (+) and negative (−) terminals.
 Primary coil resistance (Cold):
 - 0.54–0.84Ω
 Primary coil resistance (Hot):
 - 0.68–0.980
 If the resistance is not as specified, replace the ignition coil. (See page I G–50)
5. RECONNECT IGNITION COIL CONNECTORS
6. REINSTALL V–BANK COVER
Using a 5 mm hexagon wrench, install the V–bank cover with the 2 cap nuts.
HINT: For fixing the V–bank cover, push on the cover until sense of “click” is felt.
7. RECONNECT NEGATIVE (–) TERMINAL CABLE TO BATTERY

CAMSHAFT POSITION SENSOR INSPECTION
NOTICE: ‘Cold’ and ‘Hot’ in the following sentences express the temperature of the sensors themselves. ‘Cold’ is from –10°C (14°F) to 50°C (122°F) and “Hot” is from 50°C (22°F) to 100°C (212°F).

1. DISCONNECT NEGATIVE (–) TERMINAL CABLE FROM BATTERY
 CAUTION: Work must be started after 90 seconds from the time the Ignition switch is turned to the ‘LOCK’ position and the negative (–) terminal cable is disconnected from the battery.
2. DISCONNECT CAMSHAFT POSITION SENSOR CONNECTOR
3. INSPECT CAMSHAFT POSITION SENSOR RESISTANCE
 Using an ohmmeter, measure the resistance between terminals.
 Resistance (Cold):
 835–1,4000
 Resistance (Hot):
 1,060–1,645 0
 If the resistance is not as specified, replace the camshaft position sensor. (See page IG–52)
4. RECONNECT CAMSHAFT POSITION SENSOR CONNECTOR
5. RECONNECT NEGATIVE (–) TERMINAL CABLE TO BATTERY

IGNITER INSPECTION
(See procedure Spark Test on page IG–46)
IGNITION COIL
IGNITION COILS REMOVAL

1. DISCONNECT NEGATIVE (–) TERMINAL CABLE FROM BATTERY

CAUTION: Work must be started after 90 seconds from the time the Ignition switch is turned to the 'LOCK' position and the negative (–) terminal cable is disconnected from the battery.

2. REMOVE V–BANK COVER

Using a 5 mm hexagon wrench, remove the 2 cap nuts and V–bank cover.

3. REMOVE IGNITION COILS

(a) Disconnect the 6 connectors from the RH and LH cylinder heads.

(b) Remove the 8 bolts and 6 ignition coils from the RH and LH cylinder heads.

HINT: Arrange the ignition coils in correct order.
IGNITION SYSTEM – (1MZ–FE)

IGNITION COIL INSTALLATION

1. INSTALL IGNITION COILS
 (a) Install the 6 ignition coils to the RH and LH cylinder heads with the \^ bolts.
 Torque: 8 N–m (80 kgf–cm. 89 in.lbf)
 (b) Connect the 6 ignition coil connectors.

2. INSTALL V–BANK COVER
 Using a 5 mm hexagon wrench, install the V–bank cover with the 2 cap nuts.
 HINT: For fixing the V–bank cover, push on the cover until sense of “click” is felt.

3. CONNECT NEGATIVE (–) TERMINAL CABLE TO BATTERY
CAMSHAFT POSITION SENSOR
CAMSHAFT POSITION SENSOR REMOVAL
1. DISCONNECT NEGATIVE (−) TERMINAL CABLE FROM BATTERY
CAUTION: Work must be started after 90 seconds from the time the ignition switch is turned to the “LOCK” position and the negative (−) terminal cable is disconnected from the battery.

2. REMOVE CAMSHAFT POSITION SENSOR
(a) Disconnect the camshaft position sensor connector.
(b) Remove the 2 bolts and camshaft position sensor.

CAMSHAFT POSITION SENSOR INSTALLATION
1. INSTALL CRANKSHAFT POSITION SENSOR
 Torque: 8 N·m (80 kgf·cm, 69 in.lbf)
2. CONNECT NEGATIVE (−) TERMINAL CABLE TO BATTERY
CRANKSHAFT POSITION SENSOR
COMPONENTS FOR REMOVAL AND INSTALLATION

1. DISCONNECT NEGATIVE (–) TERMINAL CABLE FROM BATTERY
 CAUTION: Work must be started after 90 seconds from the time the Ignition switch is turned to the 'LOCK' position and the negative (–) terminal cable is disconnected from the battery.

2. REMOVE RH ENGINE UNDER COVER
3. REMOVE RH FENDER APRON SEAL

(See Components for Removal and Installation)

CRANKSHAFT POSITION SENSOR REMOVAL
4. DISCONNECT ENGINE WIRE
Remove the 3 nuts and disconnect the engine wire.

5. REMOVE CRANKSHAFT POSITION SENSOR
(a) Remove the bolt and disconnect the crankshaft position sensor.
(b) Disconnect the crankshaft position sensor connector.

CRANKSHAFT POSITION SENSOR INSPECTION
NOTICE: 'Cold' and 'Hot' in the following sentences express the temperature of the sensors themselves. 'Cold' is from -10°C (14°F) to 50°C (122°F) and 'Hot' is from 50°C (122°F) to 100°C (212°F).

INSPECT CRANKSHAFT POSITION SENSOR RESISTANCE
Using an ohmmeter, measure the resistance between terminals.
Resistance (Cold):
1,630–2,740 Ω
Resistance (Hot):
2,060–3,225 Ω
If the resistance is not as specified, replace the crankshaft position sensor.
CRANKSHAFT POSITION SENSOR INSTALLATION

(See Components for Removal and Installation)

1. INSTALL CRANKSHAFT POSITION SENSOR
 Torque: 8 N–m (80 kgf–cm, 69 in.lbf)

2. CONNECT ENGINE WIRE

3. INSTALL RH FENDER APRON SEAL

4. INSTALL RH ENGINE UNDER COVER

5. CONNECT NEGATIVE (–) TERMINAL CABLE
 TO BATTERY
SERVICE SPECIFICATIONS
SERVICE DATA

<table>
<thead>
<tr>
<th>Ignition timing</th>
<th>w/ Terminals TE1 and E1 connected of DLC1</th>
<th>Torque at idle 10 ± 2° BTDC @ idle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firing order</td>
<td>Part tightened</td>
<td>1 - 2 - 3 - 4 - 5 - 6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spark plug</th>
<th>Recommended spark plug</th>
<th>Correct electrode gap for new plug</th>
<th>Maximum electrode gap for used plug</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ND PK20R11</td>
<td>1.1 mm (0.043 in.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NGK BKR6EP-11</td>
<td>1.3 mm (0.051 in.)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ignition coil</th>
<th>Primary coil resistance</th>
<th>at cold 0.54 - 0.84 Ω</th>
<th>at hot 0.88 - 0.98 Ω</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Camshaft position sensor</th>
<th>Resistance</th>
<th>at cold 835 - 1,400 Ω</th>
<th>at hot 1,060 - 1,645 Ω</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Crankshaft position sensor</th>
<th>Resistance</th>
<th>at cold 1,630 - 2,740 Ω</th>
<th>at hot 2,060 - 3,225 Ω</th>
</tr>
</thead>
</table>

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Part tightened</th>
<th>Torque N·m</th>
<th>Torque kgf·cm</th>
<th>Torque ft·lbf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark plug x Cylinder head</td>
<td>18</td>
<td>180</td>
<td>13</td>
</tr>
<tr>
<td>Ignition coil x Cylinder head</td>
<td>8</td>
<td>80</td>
<td>69 in.-lbf</td>
</tr>
<tr>
<td>Camshaft position sensor x Cylinder head</td>
<td>8</td>
<td>80</td>
<td>69 in.-lbf</td>
</tr>
<tr>
<td>Crankshaft position sensor x Oil pump</td>
<td>8</td>
<td>80</td>
<td>69 in.-lbf</td>
</tr>
</tbody>
</table>